Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of the Rheb-mTOR signaling pathway in mammalian cells: constitutive active mutants of Rheb and mTOR.

Identifieur interne : 001648 ( Main/Exploration ); précédent : 001647; suivant : 001649

Characterization of the Rheb-mTOR signaling pathway in mammalian cells: constitutive active mutants of Rheb and mTOR.

Auteurs : Tatsuhiro Sato [États-Unis] ; Akiko Umetsu ; Fuyuhiko Tamanoi

Source :

RBID : pubmed:18413257

Descripteurs français

English descriptors

Abstract

Rheb (Ras homolog enriched in brain) is a GTPase conserved from yeast to human and belongs to a unique family within the Ras superfamily of GTPases. Rheb plays critical roles in the activation of mTOR, a serine/threonine kinase that is involved in the activation of protein synthesis and growth. mTOR forms two distinct complexes, mTORC1 and mTORC2. While mTORC1 is implicated in the regulation of cell growth, proliferation, and cell size in response to amino acids and growth factors, mTORC2 is involved in actin organization. However, the mechanism of activation is not fully understood. Therefore, studies to elucidate the Rheb-mTOR signaling pathway are of great importance. Here we describe methods to characterize this pathway and to evaluate constitutive active mutants of Rheb and mTOR that we recently identified. Constitutive activity of the mutants can be demonstrated by the phosphorylation of ribosomal protein S6 kinase 1 (S6K1) and eIF4E-binding protein 1 (4E-BP1) both in vivo and in vitro after starving cells for amino acids and growth factors. In addition, formation and activity of mTORC1 and mTORC2 can be measured by immunoprecipitating these complexes and carrying out in vitro kinase assays. We also describe a protocol for rapamycin treatment, which directly inhibits mTOR and can be used to investigate the mTOR signaling pathway in cell growth, cell size, etc.

DOI: 10.1016/S0076-6879(07)38021-X
PubMed: 18413257
PubMed Central: PMC2693245


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of the Rheb-mTOR signaling pathway in mammalian cells: constitutive active mutants of Rheb and mTOR.</title>
<author>
<name sortKey="Sato, Tatsuhiro" sort="Sato, Tatsuhiro" uniqKey="Sato T" first="Tatsuhiro" last="Sato">Tatsuhiro Sato</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Umetsu, Akiko" sort="Umetsu, Akiko" uniqKey="Umetsu A" first="Akiko" last="Umetsu">Akiko Umetsu</name>
</author>
<author>
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18413257</idno>
<idno type="pmid">18413257</idno>
<idno type="doi">10.1016/S0076-6879(07)38021-X</idno>
<idno type="pmc">PMC2693245</idno>
<idno type="wicri:Area/Main/Corpus">001622</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001622</idno>
<idno type="wicri:Area/Main/Curation">001622</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001622</idno>
<idno type="wicri:Area/Main/Exploration">001622</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of the Rheb-mTOR signaling pathway in mammalian cells: constitutive active mutants of Rheb and mTOR.</title>
<author>
<name sortKey="Sato, Tatsuhiro" sort="Sato, Tatsuhiro" uniqKey="Sato T" first="Tatsuhiro" last="Sato">Tatsuhiro Sato</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Umetsu, Akiko" sort="Umetsu, Akiko" uniqKey="Umetsu A" first="Akiko" last="Umetsu">Akiko Umetsu</name>
</author>
<author>
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
</author>
</analytic>
<series>
<title level="j">Methods in enzymology</title>
<idno type="ISSN">0076-6879</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing (metabolism)</term>
<term>HeLa Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (MeSH)</term>
<term>Monomeric GTP-Binding Proteins (genetics)</term>
<term>Monomeric GTP-Binding Proteins (physiology)</term>
<term>Multiprotein Complexes (MeSH)</term>
<term>Neuropeptides (genetics)</term>
<term>Neuropeptides (physiology)</term>
<term>Phosphoproteins (metabolism)</term>
<term>Protein Kinases (genetics)</term>
<term>Protein Kinases (physiology)</term>
<term>Proteins (MeSH)</term>
<term>Ras Homolog Enriched in Brain Protein (MeSH)</term>
<term>Ribosomal Protein S6 Kinases (metabolism)</term>
<term>Signal Transduction (physiology)</term>
<term>Sirolimus (pharmacology)</term>
<term>TOR Serine-Threonine Kinases (MeSH)</term>
<term>Transcription Factors (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cellules HeLa (MeSH)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (MeSH)</term>
<term>Facteurs de transcription (physiologie)</term>
<term>Humains (MeSH)</term>
<term>Neuropeptides (génétique)</term>
<term>Neuropeptides (physiologie)</term>
<term>Phosphoprotéines (métabolisme)</term>
<term>Protein kinases (génétique)</term>
<term>Protein kinases (physiologie)</term>
<term>Protéine homologue de Ras enrichie dans le cerveau (MeSH)</term>
<term>Protéines (MeSH)</term>
<term>Protéines G monomériques (génétique)</term>
<term>Protéines G monomériques (physiologie)</term>
<term>Protéines adaptatrices de la transduction du signal (métabolisme)</term>
<term>Ribosomal Protein S6 Kinases (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Sérine-thréonine kinases TOR (MeSH)</term>
<term>Transduction du signal (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Monomeric GTP-Binding Proteins</term>
<term>Neuropeptides</term>
<term>Protein Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>Phosphoproteins</term>
<term>Ribosomal Protein S6 Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Monomeric GTP-Binding Proteins</term>
<term>Neuropeptides</term>
<term>Protein Kinases</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Neuropeptides</term>
<term>Protein kinases</term>
<term>Protéines G monomériques</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Phosphoprotéines</term>
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Ribosomal Protein S6 Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Neuropeptides</term>
<term>Protein kinases</term>
<term>Protéines G monomériques</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>HeLa Cells</term>
<term>Humans</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Multiprotein Complexes</term>
<term>Proteins</term>
<term>Ras Homolog Enriched in Brain Protein</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules HeLa</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Complexes multiprotéiques</term>
<term>Humains</term>
<term>Protéine homologue de Ras enrichie dans le cerveau</term>
<term>Protéines</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rheb (Ras homolog enriched in brain) is a GTPase conserved from yeast to human and belongs to a unique family within the Ras superfamily of GTPases. Rheb plays critical roles in the activation of mTOR, a serine/threonine kinase that is involved in the activation of protein synthesis and growth. mTOR forms two distinct complexes, mTORC1 and mTORC2. While mTORC1 is implicated in the regulation of cell growth, proliferation, and cell size in response to amino acids and growth factors, mTORC2 is involved in actin organization. However, the mechanism of activation is not fully understood. Therefore, studies to elucidate the Rheb-mTOR signaling pathway are of great importance. Here we describe methods to characterize this pathway and to evaluate constitutive active mutants of Rheb and mTOR that we recently identified. Constitutive activity of the mutants can be demonstrated by the phosphorylation of ribosomal protein S6 kinase 1 (S6K1) and eIF4E-binding protein 1 (4E-BP1) both in vivo and in vitro after starving cells for amino acids and growth factors. In addition, formation and activity of mTORC1 and mTORC2 can be measured by immunoprecipitating these complexes and carrying out in vitro kinase assays. We also describe a protocol for rapamycin treatment, which directly inhibits mTOR and can be used to investigate the mTOR signaling pathway in cell growth, cell size, etc.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18413257</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>06</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0076-6879</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>438</Volume>
<PubDate>
<Year>2008</Year>
</PubDate>
</JournalIssue>
<Title>Methods in enzymology</Title>
<ISOAbbreviation>Methods Enzymol</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of the Rheb-mTOR signaling pathway in mammalian cells: constitutive active mutants of Rheb and mTOR.</ArticleTitle>
<Pagination>
<MedlinePgn>307-20</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/S0076-6879(07)38021-X</ELocationID>
<Abstract>
<AbstractText>Rheb (Ras homolog enriched in brain) is a GTPase conserved from yeast to human and belongs to a unique family within the Ras superfamily of GTPases. Rheb plays critical roles in the activation of mTOR, a serine/threonine kinase that is involved in the activation of protein synthesis and growth. mTOR forms two distinct complexes, mTORC1 and mTORC2. While mTORC1 is implicated in the regulation of cell growth, proliferation, and cell size in response to amino acids and growth factors, mTORC2 is involved in actin organization. However, the mechanism of activation is not fully understood. Therefore, studies to elucidate the Rheb-mTOR signaling pathway are of great importance. Here we describe methods to characterize this pathway and to evaluate constitutive active mutants of Rheb and mTOR that we recently identified. Constitutive activity of the mutants can be demonstrated by the phosphorylation of ribosomal protein S6 kinase 1 (S6K1) and eIF4E-binding protein 1 (4E-BP1) both in vivo and in vitro after starving cells for amino acids and growth factors. In addition, formation and activity of mTORC1 and mTORC2 can be measured by immunoprecipitating these complexes and carrying out in vitro kinase assays. We also describe a protocol for rapamycin treatment, which directly inhibits mTOR and can be used to investigate the mTOR signaling pathway in cell growth, cell size, etc.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sato</LastName>
<ForeName>Tatsuhiro</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Umetsu</LastName>
<ForeName>Akiko</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tamanoi</LastName>
<ForeName>Fuyuhiko</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 CA041996</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA041996-23</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Methods Enzymol</MedlineTA>
<NlmUniqueID>0212271</NlmUniqueID>
<ISSNLinking>0076-6879</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048868">Adaptor Proteins, Signal Transducing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C087000">EIF4EBP1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009479">Neuropeptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010750">Phosphoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C490211">RHEB protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000076205">Ras Homolog Enriched in Brain Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="C546842">MTOR protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D019893">Ribosomal Protein S6 Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.5.2</RegistryNumber>
<NameOfSubstance UI="D020559">Monomeric GTP-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D048868" MajorTopicYN="N">Adaptor Proteins, Signal Transducing</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020559" MajorTopicYN="N">Monomeric GTP-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009479" MajorTopicYN="N">Neuropeptides</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010750" MajorTopicYN="N">Phosphoproteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076205" MajorTopicYN="N">Ras Homolog Enriched in Brain Protein</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019893" MajorTopicYN="N">Ribosomal Protein S6 Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18413257</ArticleId>
<ArticleId IdType="pii">S0076-6879(07)38021-X</ArticleId>
<ArticleId IdType="doi">10.1016/S0076-6879(07)38021-X</ArticleId>
<ArticleId IdType="pmc">PMC2693245</ArticleId>
<ArticleId IdType="mid">NIHMS106485</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oncogene. 2002 Sep 12;21(41):6356-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12214276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Jun 10;269(23):16333-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8206940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1457-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 May 23;92(11):4947-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7539137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Jul 12;273(5272):239-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8662507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2004 Nov;6(11):1122-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15467718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Feb 18;307(5712):1098-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15718470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 29;280(17):17093-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 23;280(38):33076-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16049009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14238-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16176982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Nov;58(4):1074-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16262791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Dec 9;280(49):40406-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16221682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Apr 21;22(2):159-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2006 Apr 24;173(2):279-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16636147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jul 21;281(29):19793-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16728407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Aug 25;281(34):24293-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16798736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2006 Sep;6(9):729-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16915295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2006 Sep 19;16(18):1865-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16919458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 29;281(39):28605-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16870609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Oct 6;127(1):125-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16962653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Oct 15;20(20):2820-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17043309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2006 Dec;11(6):859-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17141160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Mar;9(3):316-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17277771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3514-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Mar 23;25(6):903-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17386266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 Jun 1;15(11):1383-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11390358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2002 Sep;4(9):648-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Apr;11(4):895-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12718876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2003 Sep 1;116(Pt 17):3601-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12893813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Aug 1;17(15):1829-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 Aug 5;13(15):1259-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12906785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 29;278(35):32493-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12842888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2004 Oct;16(10):1105-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15240005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Jul 27;14(14):1296-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15268862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Repair (Amst). 2004 Aug-Sep;3(8-9):883-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15279773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Sep;24(18):7965-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15340059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Nov 8;348(6297):125-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2122258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2003 Jun;5(6):578-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12771962</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
<name sortKey="Umetsu, Akiko" sort="Umetsu, Akiko" uniqKey="Umetsu A" first="Akiko" last="Umetsu">Akiko Umetsu</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Sato, Tatsuhiro" sort="Sato, Tatsuhiro" uniqKey="Sato T" first="Tatsuhiro" last="Sato">Tatsuhiro Sato</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001648 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001648 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18413257
   |texte=   Characterization of the Rheb-mTOR signaling pathway in mammalian cells: constitutive active mutants of Rheb and mTOR.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18413257" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020